Resources / Publications
Chain end-termination of p-Polybenzimidazole by bulk segment for efficient electrochemical power generation and hydrogen separation
Kwangwon Seo, Ki-Ho Nam, Haksoo Han - Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
We investigated the effects of hydrogen separation using high-temperature anhydrous proton-exchange membrane fuel-cell technology. Various acid-doped para-polybenzimidazole (p-PBI)-chain end-tethered amine-polyhedral oligomeric silsesquioxane (NH2-POSS) membranes were prepared via a unique sol-gel transition method termed as the poly(phosphoric acid) process. The resulting NH2-POSS-capped p-PBI membranes exhibited a higher phosphoric acid-doping level (128-223.5%) and proton conductivity (0.23-0.29 S cm-1 at 160 °C and 0% relative humidity) than the parent p-PBI membrane. The chemical chain end-termination of p-PBI with cage-like NH2-POSS significantly enhanced the electrochemical H2/CO2 and H2/CO separation at 160 °C. The hydrogen separation of the NH2-POSS-capped p-PBI system required a relatively small amount of energy, and the system exhibited a good dynamic response. The favorable interfacial interaction between the NH2-POSS and the p-PBI host, high thermomechanical stability, and good fuel-cell and hydrogen-separation performance at high temperatures up to 160 °C indicate the applicability of the NH2-POSS-capped p-PBI membranes to electrochemical power generation and hydrogen pumps for practical industrial applications in harsh and extreme environments.
Dragonfly was used for the 3D reconstruction of X-ray data.
Return to Publications list.
We'd be pleased to add your paper to our publications list.