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Abstract

Single image super-resolution(SISR) is an ill-posed problem that aims to
obtain high-resolution (HR) output from low-resolution (LR) input, during
which extra high-frequency information is supposed to be added to improve
the perceptual quality. Existing SISR works mainly operate in the spatial do-
main by minimizing the mean squared reconstruction error. Despite the high
peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether
the model correctly adds desired high-frequency details. Some residual-based
structures are proposed to guide the model to focus on high-frequency fea-
tures implicitly. However, how to verify the fidelity of those artificial details
remains a problem since the interpretation from spatial-domain metrics is
limited. In this paper, we propose FreqNet, an intuitive pipeline from the
frequency domain perspective, to solve this problem. Inspired by existing
frequency-domain works, we convert images into discrete cosine transform
(DCT) blocks, then reform them to obtain the DCT feature maps, which
serve as the input and target of our model. A specialized pipeline is de-
signed, and we further propose a frequency loss function to fit the nature
of our frequency-domain task. Our SISR method in the frequency domain
can learn the high-frequency information explicitly, provide fidelity and good
perceptual quality for the SR images. We further observe that our model can
be merged with other spatial super-resolution models to enhance the quality
of their original SR output.
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1. Introduction

Single image super-resolution(SISR) aims to recover high-frequency de-
tails for a high-resolution(HR) image from one of its degraded low-resolution(LR)
version. After years of development, the SISR has been widely used in
many computer vision tasks, such as media content enhancement[1], medical
imaging[2] and satellite imaging[3]. Traditional state-of-the-art SR methods
mainly adopt the example-based[1] strategy, exploiting internal similarities
or learning a mapping from the external dictionary. The sparse-coding-based
SR[4] is one of the most representative methods.

Recently, deep convolutional neural network (CNN) based SISR meth-
ods have achieved significant improvements over traditional methods. Deep
learning-based methods treat this problem as a dense image regression task,
which learns an end-to-end image mapping function represented by a CNN
between LR and HR images. Dong et al.[5] proposed SRCNN that first
adopted deep learning into SISR using a three-layer CNN to represent the
mapping function. Residual block[6] was later introduced into SISR in SRResNet|[7]
and improved in EDSR[8]. Residual block makes it possible to build deeper or
wider networks. Zhang et al.[9] and Tong et al.[10] adopted dense blocks[11]
to combine features from different levels. Zhang et al.[12] improved residual
block by adding channel attention. Based on the progress of non-blind meth-
ods, blind super-resolution methods[13], which aim at complex degradation
models in real scenarios, have received increasing attention recently.

The SISR methods mentioned above commonly use the minimization of
the mean squared error (MSE) between the recovered SR image and the
HR ground truth as the optimization target. Minimizing spatial MSE also
maximizes the peak signal-to-noise ratio (PSNR), which is a common mea-
sure used to evaluate SR algorithms. However, such a pipeline often results
in blurry effects because the high-frequency textures have been excessively
destructed in the degrading process and are hard to predict. Generative
adversarial networks (GANs)[14] based SISR approaches are proposed to
relieve the above problems. However, the unpleasant hallucinations and arti-
facts caused by GANs further pose more challenges. Zhang et al.[12] further



proposed a residual-in-residual (RIR) structure to bypass the redundant low-
frequency information through multiple skip connections, implicitly guiding
the network to focus on learning high-frequency information. However, since
the commonly used PSNR and structural similarity index measure(SSIM)
are based on per-pixel loss and picture global information, respectively, their
perception of high-frequency details is limited. To the best of our knowledge,
current spatial domain-based methods do not have an explicit approach for
learning high-frequency information and verifying the fidelity of output arti-
ficial details.

To practically resolve this problem, we propose FreqNet, a frequency-
domain-based super-resolution network, to directly learn the reconstruction
of high-frequency features. The proposed network contains two parallel lows:
the Spatial Extraction Network(SEN) and the Frequency Reconstruction
Network(FRN), in order to make use of both domains’ information. We first
convert both LR and HR images to frequency coefficients using discrete co-
sine transform (DCT)[15], then reshape them to obtain DCT feature maps.
The SEN takes standard LR images as input, through the spatial feature
reconstruction trunk and the down-sampling shrinking trunk to obtain one
component of target HR DCT feature maps. The FRN is purely operated
on frequency domain, which takes LR DCT feature maps as input, through
the frequency-domain reconstruction trunk to obtain the other component.
The weighted sum of two components makes our final frequency domain out-
put, which can be converted to SR image through inverse discrete cosine
transform(iDCT)[15]. Thanks to the characteristic of DCT, we can easily
merge our output with any other SR model to enhance the high-frequency
details of its output. We further propose depth-wise residual block(DWRB)
and deformable residual block(DRB) to be implemented respectively in FRN
and SEN that can better use the characteristics of the frequency domain
feature maps. As the ability of spatial MSE (and PSNR) to capture high-
frequency detail is very limited, we propose a frequency-domain loss function
to evaluate the quality of the output SR image.

Overall, our contributions are three-fold: (1) We propose FreqNet, a
frequency-domain-based SISR network, to learn the high-frequency features
explicitly with a specially designed pipeline. Our network can produce per-
ceptually satisfying results with high-fidelity details. (2) We propose depth-
wise residual block structure and deformable residual block structure to fit
the nature of frequency-domain feature extraction. Both structures can im-
prove our network’s reconstruction quality and feature extraction ability. (3)
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We propose a frequency-domain loss function and a corresponding metric
that measures output quality from the accuracy of high-frequency detail re-
construction.

2. Related Works

Numerous image deep learning-based SR methods have been studied in
the computer vision community. Here we focus on works related to CNN-
based methods and the works on frequency-domain learning.

2.1. Image Super-Resolution with CNN

Numerous methods have proven the effectiveness of the CNN-based pipeline
on image super-resolution tasks. The pioneering work was done by Dong et
al.[5], their proposed SRCNN for image SR achieved superior performance
against previous works. Kim et al. proposed VDSR[16] and DRCN[17] by
introducing residual learning to ease the training difficulty and significantly
improve accuracy. Tai et al. introduced recursive blocks in DRRNJ[18] and
memory blocks in MemNet[19]. A faster network structure FSRCNN][20]
was proposed to accelerate the pipeline of SRCNN. Ledig et al.[7] introduced
ResNet[6] to construct a deeper network, SRResNet, for image SR. They
also proposed SRGAN with perceptual losses[21] and generative adversarial
network (GAN)[14] for photo-realistic SR. Such GAN based model was then
introduced in ESRGAN|[22], which confirmed that dropping the batch nor-
malization layers can result in better performance. Although SRGAN and
ESRGAN can alleviate the blurring and over smoothing artifacts, their pre-
dicted results may not be faithfully reconstructed and produce unpleasing
artifacts. By removing unnecessary modules in conventional residual net-
works, Lim et al.[8] proposed EDSR and MDSR, which achieve significant
improvement. Zhang et al.[12] introduce channel attention to residual block.
Blind-SR methods have also received increasing attention recently, aiming
at complex degradation models in real scenarios by estimating degradation
kernel using an extra module[23]. The methods of [24],[25] and [26] achieved
state-of-the-art performance in real-world scenario with multiple modelling
strategies.

However, all these CNN-based methods operate on the spatial domain.
The information on the frequency domain is not directly used, though the
recovery of high-frequency information is precisely the target of the image
super-resolution task.



2.2. Frequency-Domain based Deep Learning

Projecting image to frequency domain provides a new perspective for var-
ious computer vision tasks. Remarkable performance has been achieved in
some frequency-domain works. Works of [27] ,[28] and [29] jointly train auto-
encoder-based networks on compression and inference tasks with frequency-
domain input. [30] extracts features from the frequency domain to classify
images. [31] proposes a model conversion algorithm to convert the spatial-
domain CNN models to the frequency domain. [32] propose a method of
learning in the frequency domain using DCT-based sparse image represen-
tations, proving that we can use frequency-domain information directly in
current CNN models without a complex model transition procedure. [33]
further translate the DCT representation into a sequence of DCT channel,
spatial location, and DCT coefficient triples, and achieve state-of-art perfor-
mance on image generation and restoration tasks with a Transformer-based
auto-regressive architecture.

The essence of the SR task is to recover the information of high-frequency
channels in the image. Hence, frequency-domain features are informative for
HR reconstruction and can potentially enhance the performance with proper
methods. However, there is no existing SR method using the characteristics
of DCT feature maps. Hence, we propose a super-resolution pipeline on the
DCT domain, which we will present in detail in the following section.

Precisely, the overall architecture is given in figure 1. In section 3.1, we
introduce the image conversion process that projects the spatial image to
spatial domain. In section 3.2 and 3.3, we explain the architecture and com-
ponents of FreqNet in detail. The propsed frequency-domain loss function
will be presented in section 3.4.
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Figure 1: The architecture of FreqNet. Our FreqNet contains two parallel data flows:
the Spatial Extraction Network(SEN) and the Frequency Reconstruction Network(FRN),
taking LR image I,z and LR DCT feature maps as input, respectively. The final output is
the weighted sum of predicted DCT feature maps from two sub-networks. Loss is computed
between GT DCT feature maps(on the right-top of the figure) and the final output.

We propose a frequency-domain based pipeline for 4 x image super-resolution.
Our method consists of an image conversion process that converts the spatial
image to the frequency domain and a specialized network for training with
the frequency domain information. As shown in 1, our proposed network con-
sists of two parallel sub-network, respectively operates on spatial-domain and
frequency-domain inputs to make use of both domains’ information. We will
first explain the image conversion process in the following section. Details of
architecture will be discussed in 3.2.

3.1. Image Conversion to the Frequency Domain

Following the JPEG codec, we first transform the original RGB images to
zero-centered normalized YCrCb color space, containing a brightness com-
ponent Y (luma) and two color components Cb and Cr (chroma). Then we
upsample the LR image to make it the same size as the HR image.



3.1.1. Generation of DC'T Blocks
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Figure 2: Converting pixel blocks to DCT blocks

To get frequency-domain information, we crop the images into uniform
size of pixel blocks, then pass them through Discrete Cosine Transform(DCT)
module. The DCT projects an image into a collection of cosine components
which stands for different frequencies of 2D signals. Given a block size M,
the two-dimensional DCT converts a zero-centered M x M pixel blocks P to
obtain an M x M DCT block D, as interpreted below:
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D —
w E E P,jcos( )cos( i ) (1)
=0 45=0
£ ifx =0
—_J !
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Where u and v are the horizontal and vertical index of frequencies in the
DCT block, 7 and j stand for the horizontal and vertical index of pixel block,
and « is a normalizing scale factor to enforce orthonormality.

For a standard DCT transform in JPEG codec, the block size M is 8,
which indicates that any information in an 8 x 8 pixel block can be rep-
resented by a linear combination of 64 2D signals. However, in 4x image
super-resolution, the 8 x 8 block is upscaled to 32 x 32. Thus we perform
DCT transform with the block size 32. At this stage, both the LR and HR
images are converted into frequency-domain blocks that contain the DCT
information of 1024 frequency channels.

3.1.2. Reforming DCT feature maps

Not all information in the 32 x 32 frequency range can be perceived for
the perceptual ability of the human eye. Many other DCT based meth-
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Figure 3: Reforming DCT blocks to DCT feature maps

ods induce sparsity to DCT blocks through quantization. However, for the
super-resolution task, we tend to preserve the information as much as pos-
sible. Thus, as illustrated in figure 3, we perform a region selection on the
DCT block. Only the values inside the left-top RxR selected region will be
preserved for the next step. In practice, we choose R = 10 as a trade-off
between training difficulty and perceptual quality. We will explain later how
we handle the values outside the selected region.

Following the processing method proposed by [32], we flatten the DCT
blocks to DCT vectors of length 1 x R?. Then we pose these vectors at their
corresponding spatial positions, forming a cuboid of size H/R x W/R x R
where H and W are the height and width of the original image. This cuboid
is a collection of DCT feature maps, each channel at the third dimension is a
frequency-domain feature map that contains the information of the frequency
it represents.

3.1.3. Channel-wise Normalization
We further perform normalization on each frequency channel. For channel
1 of the frequency-domain feature maps M, we perform:
(M; — Mean;)

M. = 3
norm Stdi ( )

Where Mean; and Std; denotes the mean and standard deviation of channel
1 that are pre-calculated on our training set.



Unlike quantization, this normalization process does not change the rel-
ative intensity of each feature map, thus guaranteeing the integrity of infor-
mation. The purpose of this operation is to project the values to a suitable
range for learning.

3.2. Architecture of FreqNet

As shown in figure 1, our FreqNet contains two parallel data flows: the
Spatial Extraction Network(SEN) and the Frequency Reconstruction Net-
work(FRN), in order to make use of both domains’ information.

The SEN takes up-scaled LR image [;r as input. Only one convolu-
tional layer is used to extract the shallow feature Fjpq00 from the LR in-
put. Fipauow is then passed through the Reconstruction Trunk(RT), which
contains a sequence of multiple Residual Groups(RG)[12] and Deformable
Residual Groups(DRG) to convert the spatial feature maps into frequency
domain features Fl,.,. Then we feed Fy,., to Shrinking Trunk(ST), which
consists of 4 down-sampling convolution layers with stride = 2, to gradually
shrink the scale of features maps while maintaining the channels. The final
output Mgg, is one component of target HR DCT feature maps. The overall
process can be interpreted as:

Fshallow = Hshallow(ILR> (4>
Ffreq = HRT(Fshallow) (5)
MSR1 = HST(Ffreq) (6>

Where Hpu0 denotes the first convolution operation, Hzr and Hgr denote
the RT and ST structure.

The FRN is purely operated on frequency domain. We take the pre-
processed LR DCT feature maps Mpr as input, through the frequency-
domain reconstruction trunk(FRT), which contains a sequence of depth-wise
residual groups(DWRG) and RG to obtain the other component of target
HR DCT feature maps, noted as Mgg,. A skip-connection is added to take
advantage of the similarities between input and the target, thus drawing
attention towards the difference on high-frequency channels. The overall
process can be interpreted as:

Msg, = Hprr(Mpg) + Mg (7)

Where Hrprr denotes the FRT structure.



The outputs of two sub-network have the same size, and a weighted
element-wise sum is applied to get the final output:

Mgsgr = Mgp, © W1 + Mgr, © Wy (8)

Where the W; and W, are the pre-defined weights for two components.

The output Mgg is further fed to a 2-stage inverse Discrete Cosine Trans-
form(iDCT) module, which is an inverse flow of data-processing pipeline we
defined in 3.1. We first project the Mgr back to its original range of values
by performing denormalization on each channel. Then, in stage-1, we reform
the H/R x W/R x R? DCT feature maps back to DCT blocks of size R x R,
and the rest of 32 x 32 block is filled with information from LR DCT blocks.
Then we use iDCT to get the final SR image in stage-2.

3.3. Modified Residual Group

- Basic Residual Group

Depth-Wise Residual Group Deformable Residual Group

./ Residual Block

- Deformable Residual Block

|| Depth-Wise Residual Block

r Conv 3x3 LReLU

' Depth-wise Conv 3x3

' Deformable Conv 3x3

@ Element-wise sum

Figure 4: Different types of RG and RB implemented in FreqNet
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Inspired by the success of residual groups(RG) in [12], we take it as the
basic module of our network. As shown in figure 4, an RG is a sequence of n
residual blocks(RB)[8] with an in-group skip connection between the input
and output features. The original RB can be interpreted as:

Fres = HConvg (LeakyReLU(HConm (Enput))) (9>
Foutput = Enput + Fres (1())

Where Hcony denotes a convolution layer, Fjy,,, is the feature from last block
and Fiupy is the feature towards next layer. As described in 3.1.3, the final
output of network should be of zero-centered distribution, thus we replace
ReLU layer by LeakyReLLU with a high negative slope to fit our case.

3.83.1. Deformable Residual Group

The RG structure makes it possible to achieve large depth, consequently
providing a large receptive field size. However, uniformly extending the re-
ceptive field does not always positively impact high-precision required tasks,
such as the reconstruction of frequency-domain feature maps, due to the po-
tential redundant information. Deformable convolution layer[34](DefConv)
can be a solution. By learning an offset, DefConv provides the ability to
constrain the sampling area. Each convolution operation only focuses on the
valuable region, reducing the impact from the redundant receptive area.

Thus, as shown in figure 4 we further integrate DefConv into RB by partly
replacing the original convolutional layers, introducing the deformable resid-
ual block(DRB), which is the basic module of deformable residual group(DRG):

Foutput = Enput + HDefC’onv(LeakyReLu(HCOnv(Enput))) (11>

Where Hpetcony denotes the deformable convolution layer. The proposed
DRB structure has better guidance on the receptive field, thus yield more
accurate feature extraction from last layer. We implement DRG sequence
in the reconstruction trunk of SEN sub-network, after a sequence of regular
RG, to improve the robustness of reconstructed F,q,.

3.3.2. Depth-wise Residual Group

For most spatial domain tasks, the intermediate deep feature maps are
abstract and strongly correlated. However, through the reforming method we
defined in 3.1.2, the frequency-domain feature maps have concrete semantic
information and share less correlation between each other. To better reflect
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this characteristic, we propose the depth-wise residual block(DWRB) that
replace the first convolution layer in RB by depth-wise convolution layer[35]:

Foutput = -Finput + HConv(LeakyReLu(HDWConv(Enput))) (12>

Where Hpwcony denotes the depth-wise convolution layer. A depth-wise
convolution layer performs 2-D convolution on each channel of the input
without merging information from other channels, which is suitable to make
the module focus on extracting information from own channel for the next
stage of reconstruction, rather than relying on global information. Depth-
wise residual group(DWRG) is the RG that deploy the DWRB instead of
RB.

3.4. Frequency-domain Loss Function

The definition of our frequency-domain loss function L., is critical to
the performance of our network. Commonly, the loss function of super-
resolution task is based on pixel-wise Mean Square Error(MSE), as minimiz-
ing spatial MSE also maximizes the peak signal-to-noise ratio(PSNR). How-
ever, solutions from MSE optimization can achieve high PSNR while lacking
high-frequency content, which results in unsatisfying perceptual quality with
overly smooth textures|[7].

For our frequency domain super-resolution, this problem can be solved
in a intuitive method. Since the target is a series of frequency-domain fea-
ture maps with semantic meaning assigned to each channel, we can allocate
different weights to each frequency channel while computing the loss, thus
explicitly guide the network to focus on the reconstruction of selected high-
frequency channels. Following [36], we further replace the MSE backbone by
Charbonnier Loss that can better handle the outliers, which are more likely
to appear in frequency-domain samples. The proposed frequency-domain loss
function L., is calculated as:

Lepar (21, 22) = \/($1 — 19)? + €2 (13)
1 R2 Wmu.p Hmap

RQWmapHmap ; ﬁc Z Z LChav"(MSRc@’w MHRC,z,y) (14)

Lreq =
z=1 y=1

Where Lepg, is the backbone of Charbonnier Loss, Wi, and H,,,, denotes
the width and height of output feature maps, 5. denotes the weight assigned
to channel ¢ and M denotes the frequency-domain feature maps, as we pre-
viously define in equation 8.
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4. Experiment Results

4.1. Ezxperimental Settings

Our experimental settings about datasets, degradation models, evaluation
metric and training settings are declared below:

Datasets and degradation model. Following [37] We use 800 training im-
ages from DIV2K dataset[37] as training set. For testing, we use four stan-
dard benchmark datasets: Set5[38], Set14[39], BSD100[40] and MANGA109[41].
We conduct experiments with Bicubic degradation model.

FEvaluation Metrics. The SR results are evaluated with PSNR on the
luminance channel(Y channel) of transformed YCrCb space. We also propose
a frequency-domain reconstruction metric(FRM) on the luminance channel
that measures the quality of high-frequency feature reconstructed:

) (15)

Training Settings. We crop 800 training images into mini patches. Re-
spectively, the size of cropped LR image is 32 x 32 and the size of cropped
HR image is 256 x 256. The relative location of each pair of LR and HR
patches is strictly identical. Our model is trained by ADAM optimizor[42],
with 81 = 0.9, B = 0.99 and ¢ = 1078. We implement Cosine Learn-
ing Rate(CosLR) strategy, which periodically adjust the learning rate at t,
epoch of iy, period with the equation:

77i,t = Nmin + %(nmam - 77mm>(1 =+ cos %ﬂ-) (16>
Where the 1,4, is 1074 and 1,5, is 1077, the number of epochs in each period
is 30. We use PyTorch[43] to implement our method with Nvidia Geforce
RTX 2080 ti GPU.

The channel-wise weights allocation of our proposed loss function L ., (Equation
13) will be discussed in detail in section4.3.

FRM =10 * logyo(

freq

4.2. Results with Bicubic Degradation Model

We quantitatively compare our method with 8 State-of-the-art methods,
including SRCNN/[5], FSRCNN[20], EDSR[8], EDN[9], RRDBI[22] and its
perceptual-driven method ESRGAN|22], MSRResNet[7] and its perceptual-
driven method MSRResNet-GAN][7]. We further perform visual comparisons
with these two GAN-based methods and their PSRN-oriented version to
demonstrate the perceptual quality and fidelity of the output from our model.

13



4.2.1. Quantitative Results by PSNR/FRM

Table 1 shows quantitative comparisons for our 4x SR task, we compare
the average PSNR and FRM on Y channel. The PSNR results of ESR-
GAN and MSRResNet pair are computed using the released model. For the
other models, the results are cited from their papers. All the FRM results
are computed using released models. Our model has the best FRM with a
slight decrease in PSNR value, which shows that our method has a more
accurate reconstruction of key high-frequency information. Meanwhile, al-
though GAN-based methods visually provide more high-frequency details,
their FRM values are generally low, reflecting the lack of accuracy of high-
frequency information reconstructed by such methods. We will discuss the
visual behavior in detail in section 4.2.2.

Table 1: Quantitative results with Bicubic degradation model on Y channel. Best and
second best results are highlighted and underlined.

Method Seth Set14 Mangal09 BSD100
PSNR | FRM | PSNR | FRM | PSNR | FRM | PSNR | FRM
Bicubic 28.78 140.06 |26.38 |39.11 | 24.89 | 39.65 |26.33 | 38.97
SRCNN 30.48 |40.01 |27.50 | 39.09 | 27.58 | 39.71 |26.90 | 39.11
FSRCNN 30.72 | 40.13 | 27.61 |39.12 | 27.90 | 39.77 | 26.98 | 39.09
MSRResNet 32.22 | 40.19 | 28.63 | 39.26 | 30.48 | 40.04 | 27.59 | 39.31
MSRResNet-GAN | 29.40 | 39.64 | 26.02 | 38.84 | 27.69 | 39.12 | 25.16 | 39.01
EDSR 32.46 | 40.32 | 28.80 | 39.61 | 31.02 | 40.46 |27.71 | 39.25
RDN 32.47 | 40.27 | 28.81 |39.47 | 31.00 |40.71 |27.71 | 39.23
RRDB 32.60 | 40.34 | 28.88 | 40.14 | 31.16 | 40.63 | 27.76 | 39.52
ESRGAN 29.56 |39.38 |26.19 | 38.79 | 28.03 | 39.28 | 25.32 | 38.86
FreqNet(Ours) 32.08 | 43.56 | 28.47 | 42.60 | 30.23 | 40.91 | 27.51 | 40.87
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4.2.2. Visual Results
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Figure 5: Visual comparison for 4x SR with Bicubic Degradation model on BSD100
datasets.

In figure 5, we show visual comparisons of SR results with the Bicu-
bic Degradation model on BSD100 datasets. For images “126007.png” and
“351093.png”, we observe that our method has more precise building con-
tours than the PSNR method, contains more details, and does not have the
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excessive texture as in the GAN method. For image “210088.png”, we ob-
serve that our method produces the best face pattern and eye details for the
clownfish. For image “21077.png”, our method better restores the text “cas”
over the other methods. And in image “182053.png”, our method predicts
the arches correctly while having fewer unnecessary artifacts.

4.3. Effects of Frequency-domain Loss Function and Modified RG

We study the effects of proposed Deformable Residual Group, Depth-wise
Residual Group and the Frequency-domain Loss Function.

4.8.1. Settings and Effects of Frequency-domain Loss Function.

As we defined in Equation 13, each channel has a pre-assigned weight. We
propose a statistical solution to decide the weight of each channel coarsely. As
shown in Figure 6, given a pair of HR and up-sampled LR DCT blocks, after
the region selection process(i.e. Figure 3, (d)), of size R x R, we perform
8 times of computation in total. For the i-th computation, we keep the
(1+2) x (i+2) DCT region at the left-top of original DCT block unchanged,
and set the values outside the selected region to be 0. Then we perform iDCT
on both LR and HR DCT blocks and compute the mean pixel-wise residual
res; of two converted pixel blocks as:

Igr — IR
R2

res; =

(17)

Table 2: Weight Allocation.

Region: | 3 | 4-3 | 5-4 | 6-5 | 7-6 | 8-7 | 9-8 | 10-9
Be 111 5 10 |10 |5 1 1

We randomly picked 1000 samples from the training set to perform the
statistics by accumulating res;. We define res; = 0, then for each ¢, the
value v; = res; — res;_; reflects the difference between HR and LR images
while considering the addition frequency channels of R = ¢ 4+ 2, which is
proportional to their importance. Therefore, based on [v;];cp15, we allocate
weights as the table 2 shows, where Region i — (¢ — 1) denotes the additional
channels between the left-top i x ¢ region and (i — 1) x (i — 1) region of
the R x R DCT block, and 3 denotes the weight assigned to these channels
involved in Equation 13.
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Figure 6: Progressively calculate residuals between HR and LR pixel-blocks under dif-
ferent size of region selection.

To demonstrate the effect of the proposed frequency-domain loss function
Lreq, we run the training process with MSE and Ly,., respectively, and
compare the output of two models on Setb. Both the PSNR and FRM
of Ly, supervised model is higher than the MSE supervised model, and
the output images contain more accurate high-frequency texture. Figure 7
shows the comparison of the SR results of image “bird.png” between MSE-
supervised and Lj,.,-supervised FreqNet after same number of iterations.
The Lc4-supervised model can produce more high-frequency details.

FreqNet-L;,, FreqNet-MSE

Figure 7: Comparison of MSE-supervised and L f,.q-supervised FreqNet. Ly,.., super-
vised result contains more high-frequency details.
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4.3.2. Effects of Deformable(DRG) and Depth-wise Residual Group(DWRG).
We perform a series of ablation experiments by replacing DRG or/and
DWRG with original RG, to demonstrate the effect of our modified RG

structure.

Table 3: Ablation Experiments on DWRG and DWG. We use PSNR and our proposed
FRM as the metric.

DRG X v X v
DWRG X X v v
PSNR on Setb | 31.88 | 32.06 | 31.91 | 32.08
FRM on Setb | 43.24 | 43.51 | 43.29 | 43.56

Respectively, in Spatial Extraction Network(SEN) we set numpre =
3 and numpre = 7, in Frequency Reconstruction Network(FRN) we set
numpwre = 3 and numgrg = 7. For each group, the number of residual
blocks is set as 10. As shown in Table 3, the PSNR on Set increased by
0.18 dB when we replace specific RG with DRG, increased by 0.03 dB when
we replace specific DWRG, and we can have the best performance by using
both of them. The FRM on Set5 also increased when we replace RG with
DRG and DWRG, by 0.27 and 0.05 respectively. The comparison shows the
effectiveness of our proposed modified Residual Group architectures.

4.4. High-frequency Detail Enhancement based on other SR Models

As the output of our proposed model is a group of separated frequency-
domain feature maps, we can easily merge our output with the output of
other SR models, thus realize the enhancement on selected high-frequency
channels. We first perform a similar process as 3.1 to convert the output from
other SR model Igg,,; to its frequency-domain feature maps group Fgg, i,
then we replace certain channels in Fgp,,; with the corresponding channels
in Foupue from FreqNet to get the merged output Ferge.
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\

MSRResNet-GAN Bicubic

Figure 8: Merging with the output of FreqNet can reduce unreasonable artifacts from
the GAN method while maintaining the details in the picture.

Specifically, we can merge our output with GAN-based SR models. As
shown in Figure 8, we merge the output of MSRResNet-GAN[22] with the
output of our model, for image “ARMS.png” in “Mangal09”[41], the results
are presented in Y-channel. The excessive artifacts from GAN can be cor-
rected by channel replacement, and the reasonable high-frequency informa-
tion that doesn’t ruin the fidelity can be preserved. This method is practical
when the output is blurred due to the difficulty of prediction.

5. Conclusions

We propose FreqNet, a frequency-domain image super-resolution model
that explicitly learn the reconstruction of high-frequency details from LR
images. We propose the depth-wise residual group(DWRG) and deformable
residual group(DRG) structure to fit the characteristics of frequency-domain
task and improve the ability of our network. Meanwhile, we propose a
frequency-domain loss function and the frequency-domain reconstruction met-
ric(FRM) that can measure the quality of high-frequency detail reconstruc-
tion. The quantitative and visual results demonstrate the effectiveness of our
method, and we can further merge the output of our network with the other
SR models as a post-processing enhancement.
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